Characterization and expression analysis of FRUITFULL- and SHATTERPROOF-like genes from peach (Prunus persica) and their role in split-pit formation.

نویسندگان

  • Eleni Tani
  • Alexios N Polidoros
  • Athanasios S Tsaftaris
چکیده

The fruit canning industry processes large quantities of the clingstone varieties of peach (Prunus persica L. Batch). The occurrence of split-pit formation--the opening of the pit and sometimes splitting of the fruit--causes deterioration of canned fruit quality. The frequency of split-pit formation is influenced by genetic and environmental factors. To increase understanding of the molecular mechanisms underlying split-pit formation in peach, we cloned and characterized the PPERFUL and PPERSHP genes that are homologues to the genes FRUITFULL and SHATTERPROOF, respectively, which are involved in fruit splitting (pod shattering) in Arabidopsis thaliana. The deduced amino acid sequences of the two genes had high homology with members of the MADS-box family of transcription factors, and particularly with other members of the FUL-like family of A-type MADS-box proteins and PLENA-like family of C-type MADS-box proteins, respectively. PPERFUL and PPERSHP were expressed throughout fruit development from full anthesis until fruit harvest. Differences in the mRNA abundance of each gene were compared in a split-pit sensitive and a split-pit resistant variety. Results suggested that temporal regulation of PPERFUL and PPERSHP expression may have an effect on the split-pit process.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The study of a SPATULA-like bHLH transcription factor expressed during peach (Prunus persica) fruit development.

Extensive studies on the dry fruits of the model plant arabidopsis (Arabidopsis thaliana) have revealed various gene regulators of the development and dehiscence of the siliques. Peach pericarp is analogous to the valve tissues of the arabidopsis siliques. The stone (otherwise called pit) in drupes is formed through lignification of the fruit endocarp. The lignified endocarp in peach can be sus...

متن کامل

Characterization and expression analysis of AGAMOUS-like, SEEDSTICK-like, and SEPALLATA-like MADS-box genes in peach (Prunus persica) fruit.

MADS-box genes encode transcriptional regulators that are critical for flowering, flower organogenesis and plant development. Although there are extensive reports on genes involved in flower organogenesis in model and economically important plant species, there are few reports on MADS-box genes in woody plants. In this study, we have cloned and characterized AGAMOUS (AG), SEEDSTICK (STK) and SE...

متن کامل

Genome-Wide Identification, Expression Patterns, and Functional Analysis of UDP Glycosyltransferase Family in Peach (Prunus persica L. Batsch)

Peach (Prunus persica L. Batsch) is a commercial grown fruit trees, important because of its essential nutrients and flavor promoting secondary metabolites. The glycosylation processes mediated by UDP-glycosyltransferases (UGTs) play an important role in regulating secondary metabolites availability. Identification and characterization of peach UGTs is therefore a research priority. A total of ...

متن کامل

Dormancy-associated MADS genes from the EVG locus of peach [Prunus persica (L.) Batsch] have distinct seasonal and photoperiodic expression patterns

Mapping and sequencing of the non-dormant evg mutant in peach [Prunus persica (L.) Batsch] identified six tandem-arrayed DAM (dormancy-associated MADS-box) genes as candidates for regulating growth cessation and terminal bud formation. To narrow the list of candidate genes, an attempt was made to associate bud phenology with the seasonal and environmental patterns of expression of the candidate...

متن کامل

The Cloning and Functional Characterization of Peach CONSTANS and FLOWERING LOCUS T Homologous Genes PpCO and PpFT

Flowering is an essential stage of plant growth and development. The successful transition to flowering not only ensures the completion of plant life cycles, it also serves as the basis for the production of economically important seeds and fruits. CONSTANS (CO) and FLOWERING LOCUS T (FT) are two genes playing critical roles in flowering time control in Arabidopsis. Through homology-based cloni...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Tree physiology

دوره 27 5  شماره 

صفحات  -

تاریخ انتشار 2007